California Progress in Energy-Efficient Buildings The Long View: 1974 – 2030

August 5, 2008

Arthur H. Rosenfeld, Commissioner
California Energy Commission
(916) 654-4930
ARosenfe@Energy.State.CA.US

http://www.energy.ca.gov/commissioners/rosenfeld.html or just Google "Art Rosenfeld"

California Energy Commission Responsibilities

Both Regulation and R&D

- California Building and Appliance Standards
 - Started 1977
 - Updated every few years
- Siting Thermal Power Plants Larger than 50 MW
- Forecasting Supply and Demand (electricity and fuels)
- Research and Development
 - ~ \$80 million per year
- California is introducing communicating electric meters and thermostats that are programmable to respond to time-dependent electric tariffs.

How Much of The Savings Come from Efficiency

 Some examples of estimated savings in 2006 based on 1974 efficiencies minus 2006 efficiencies

	Billion \$
Space Heating	40
Air Conditioning	30
Refrigerators	15
Fluorescent Tube Lamps	5
Compact Floursecent Lamps	5
Total	95

- Beginning in 2007 in California, reduction of "vampire" or standby losses
 - This will save \$10 Billion when finally implemented, nationwide
- Out of a total **\$700 Billion**, a crude summary is that 1/3 is structural, 1/3 is from transportation, and 1/3 from buildings and industry.

Two Energy Agencies in California

- The California Public Utilities Commission (CPUC) was formed in 1890 to regulate natural monopolies, like railroads, and later electric and gas utilities.
- The California Energy Commission (CEC) was formed in 1974 to regulate the environmental side of energy production and use.
- Now the two agencies work very closely, particularly to delay climate change.
- The Investor-Owned Utilities, under the guidance of the CPUC, spend "Public Goods Charge" money (rate-payer money) to do everything they can that is cost effective to beat existing standards.
- The Publicly-Owned utilities (20% of the power), under loose supervision by the CEC, do the same.

California's Energy Action Plan

- California's Energy Agencies first adopted an Energy Action Plan in 2003. Central to this is the State's preferred "Loading Order" for resource expansion.
- 1. Energy efficiency and Demand Response
- 2. Renewable Generation,
- 3. Increased development of affordable & reliable conventional generation
- 4. Transmission expansion to support all of California's energy goals.
- The Energy Action Plan has been updated since 2003 and provides overall policy direction to the various state agencies involved with the energy sectors

Per Capita Electricity Sales (not including self-generation) (kWh/person) (2006 to 2008 are forecast data)

Annual Energy Savings from Efficiency Programs and Standards

Impact of Standards on Efficiency of 3 Appliances

Source: S. Nadel, ACEEE,

in ECEEE 2003 Summer Study, www.eceee.org

New United States Refrigerator Use v. Time and Retail Prices

Source: David Goldstein

Annual Energy Saved vs. Several Sources of Supply In the United States

In the United States

Value of Energy to be Saved (at 8.5 cents/kWh, retail price) vs.

Several Sources of Supply in 2005 (at 3 cents/kWh, wholesale price)

Air Conditioning Energy Use in Single Family Homes in PG&E The effect of AC Standards (SEER) and Title 24 standards

Comparison of 3 Gorges to Refrigerator and AC Efficiency Improvements

三峡电量与电冰箱、空调能效对比

provided by David Fridley, LBNL

United States Refrigerator Use, repeated, to compare with Estimated Household Standby Use v. Time

Improving and Phasing-Out Incandescent Lamps

California IOU's Investment in Energy Efficiency

Gas and Electric Decoupling in US As of 11/2006 ME. MT ND OR (NH) WI SD WY NJ IA NE DE OH NV UT IL MD ∞ MO KS CA NC OK SC AR AL GA MS TX LA FL Legend Adopted Gas Decoupling (7) Pending Gas Decoupling (9) No Gas Decoupling (34) Adopted Electric Decoupling (1) Pending Electric Decoupling (5) No Electric Decoupling (44)

Energy Efficiency Incentive Mechanism Earnings/Penalty Curve (D.07-09-043, p. 8)

"Decoupling Plus"

Part 2 Cool Urban Surfaces and Global Warming

Hashem Akbari

Heat Island Group Lawrence Berkeley National Laboratory

> Tel: 510-486-4287 Email: H_Akbari@LBL.gov http:HeatIsland.LBL.gov

International Workshop on Countermeasures to Urban Heat Islands August 3 - 4, 2006; Tokyo, Japan

Temperature Rise of Various Materials in Sunlight

Direct and Indirect Effects of Light-Colored Surfaces

Direct Effect

 Light-colored roofs reflect solar radiation, reduce airconditioning use

Indirect Effect

- Light-colored surfaces in a neighborhood alter surface energy balance; result in lower ambient temperature

and in Santorini, Greece

Cool Roof Technologies

<u>Old</u>

flat, white

pitched, white

New

pitched, cool & colored

Cool Colors Reflect Invisible Near-Infrared Sunlight

Cool and Standard Color-Matched Concrete Tiles

- Can increase solar reflectance by up to 0.5
- Gain greatest for dark colors

Cool Roofs Standards

- Building standards for reflective roofs
 - American Society of Heating and Air-conditioning Engineers (ASHRAE): New commercial and residential buildings
 - Many states: California, Georgia, Florida, Hawaii, ...
- Air quality standards (qualitative but not quantitative credit)
 - South Coast AQMD
 - S.F. Bay Area AQMD
 - EPA's SIP (State Implementation Plans)

From Cool Color Roofs to Cool Color Cars

- Toyota experiment (surface temperature 18F cooler)
- Ford, BMW, and Fiat are also working on the technology

Cool Surfaces Also Delay Global Warming "White Washing Our Green House"

- Forthcoming: "Global Cooling: Increasing Worldwide Global Albedos"
 Hashem Akbari, Surabi Menon, Arthur Rosenfeld, submitted to
 Journal of Climatic Change (2008).
- Conclude that cool roofs and pavements, worldwide, would offset 40 Gt of CO2, which is the same as one years production today!
- The 40 GtCO2 could be achieved over say 20 years, at 2 GtCO2 per year.

100 Largest Cities have 670 M People

Dense Urban Areas are 1% of Land

- Area of the Earth = $511x10^{12} \text{ m}^2$
- Land Area $(29\%) = 148 \times 10^{12} \text{ m}^2$ [1]
- Area of the 100 largest cities = 0.38x10¹² m² = 0.26% of Land Area for 670 M people
- Assuming 3B live in urban area, urban areas = [3000/670] x
 0.26% = 1.2% of land
- But smaller cities have lower population density, hence, urban areas = 2% of land
- Dense, developed urban areas only 1% of land [2]
- 1% of land is 1.5 x 10¹² m² = area of a square of side s.
 s = 1200 km or 750 miles on a side. Roughly the area of the remaining Greenland Ice Cap (see next slide)

IMPACTS OF A WARMING ARCTIC

Greenland Ice Sheet Melt Extent

Cooler cities as a mirror

- Mirror Area = $1.5x10^{12}$ m² [5] *(0.1/0.7)[δ albedo of cities/ δ albedo of mirror]
 - = $0.2x10^{12}$ m² = 200,000 km² {This is equivalent to an square of 460 km on the side}
 - = 10% of Greenland

50% of California

Equivalent Value of Avoided CO₂

- CO₂ currently trade at ~\$25/ton
- 40Gt worth \$1000 Billion = \$1 Trillion for changing albedo of roofs and paved surface
- Cooler roofs alone worth \$500 B
- Cooler roofs also save air conditioning (and provide comfort)
 worth ten times more
- Let developed countries offer \$1 million per large city in a developing country, to trigger a cool roof/pavement program in that city

California cool urban surfaces and AB32

US Greenhouse Gas Abatement Mapping Initiative

December 12, 2007

McKinsey&Company

Exhibit B

U.S. MID-RANGE ABATEMENT CURVE - 2030

Abatement

Source: McKinsey analysis

McKinsey CO2 Abatement Curves

- McKinsey provides the first graph we've seen that offers a balanced graphical comparison of
 - Efficiency as a negative cost or profitable investment
 - Renewables as costing > 0
- Two properties of these Supply Curves
 - 1. The shaded areas are proportional to annualized savings or costs -- the graph shows that efficiency (area below x-axis) saves about \$50 Billion per year and nearly pays for the renewables (area above x-axis)

The ratio is about 40:60

2. The Simple Payback Time (SPT) can be estimated directly from the graph, if we know the service life of the investment

McKinsey Quarterly

A cost curve for greenhouse gas reduction

With a Worldwide Perspective

A global study of the size and cost of measures to reduce greenhouse gas emissions yields important insights for businesses and policy makers.

Per-Anders Enkvist, Tomas Nauclér, and Jerker Rosander

http://www.mckinseyquarterly.com/Energy Resources Materials/
A cost curve for greenhouse gas reduction abstract

Global cost curve for greenhouse gas abatement measures beyond 'business as usual'; greenhouse gases measured in GtCO2e1

 Approximate abatement required beyond 'business as usual,' 2030

Part 3 – Demand Response

- Thermal Mass
- Thermal Storage
- Operable Shutters
- Cool Roofs

California is VERY MUCH a Summer Peaking Area

Time dependent valuation (TDV) prices are also used to calculate bills

- TDV prices are incorporated into California appliance standards (Title 20) and building standards (Title 24)
- TDV prices, or avoided costs, are independent of the idiosyncrasies of utility tariffs
- TDV prices incent efficient air conditioners

Demand Response and Advanced Metering Infrastructure

- Began 6 years ago during California electricity crisis
 - All large customers (>200kW) received digital meters and were required to move to Time-of-Use rates
- In 2003, we established a Goal of 5% price responsive demand by 2007
- We have been testing the demand response of "CPP" (Critical Peak Pricing, which is the California version of French "Tempo")
- Results for residential customers
 - 12% reduction when faced with critical peak prices and no technology
 - 30% to 40% reduction for customers with air conditioning, technology, and a critical peak price.
- For larger customers, the Demand Response Research Center at Lawrence Berkeley National Lab has been testing Automated Demand Response with the same type of "CPP" tariff
 - Customer Response in the range of 12% during events
 - And response is "pre-programmed" and can be automatic
 - Highly customer specific (process load, lighting, HVAC)

Critical Peak Pricing (CPP) with additional curtailment option

Potential Annual Customer Savings: 10 afternoons x 4 hours x 1kw = 40 kWh at 70 cents/kWh = \sim \$30/year

CPP rates – Load Impacts

Residential Response on a typical hot day Control vs. Flat rate vs. CPP-V Rate

(Hot Day, August 15, 2003, Average Peak Temperature 88.5°)

Most customers (\sim 80%) Saved Money and Most (\sim 60%) thought all customers should be offered this type of rate.

Fraction of Customers on CPP Rates with Lower bills in 2004 and 2005- Residential and Small Commercial

Customer Acceptance of CPP rates

Residential participants express a strong interest in having dynamic rates offered to all customers.

Just some of the proposed systems for PCTs and demand response in the residential and small commercial/industrial sectors.

Part 4 California Greenhouse Reduction Goals: AB 32

Emissions of CO2 in California by End Use in 2004 Total Emissions = 490 Million metric tons CO2 equivalent

Strategies for Meeting California's CO2 Goals in 2020 Total Reductions = 174 Million metric Tons CO2 equivalent

Governor Schwarzenegger's and California's Efforts

June 2005 Executive Order on Climate Change

- Reduce greenhouse gases:
 - to 2000 levels by 2010
 - to 1990 levels by 2020 (~30% below BAU!!)
 - to 80 percent below 1990 levels by 2050

AB 32 – the Global Warming Solutions Act of 2006

- Confirms the Governor's Executive Order
- Adopt regulations to achieve maximum feasible and costeffective GHG reductions
- Adopt market mechanisms, such as cap and trade
- Establish mandatory reporting of GHG emissions by major industries
- Adopt a statewide GHG emissions limit for 2020 matching
 1990 emissions

Comparison of Fuel Economy – Passenger Vehicles

Renewable Electricity Generation in California (not including large hydroelectric, > 30 MW)

